
1.  Introduction
Carbonyl sulfide (OCS) is the most abundant sulfur-containing gas in Earth's atmosphere with an estimated life-
time of greater than 2 years (Brühl et al., 2012; Chin & Davis, 1993; Montzka et al., 2007). In the stratosphere, 
OCS is a principle precursor to sulfate aerosol which plays a critical role in Earth's radiation budget and can serve 
to catalyze heterogeneous reactions with importance to stratospheric ozone chemistry (Crutzen, 1976; Solomon 
et al., 1986). In the troposphere, OCS is readily consumed by the terrestrial biosphere, and has proven to be an 
effective tool for estimating gross primary production (GPP; Asaf et al., 2013).

Despite the importance of OCS to stratospheric chemistry and its utility for estimating GPP, the magnitude 
and spatial distribution of OCS sources remain poorly constrained (Kremser et al., 2016; Ma et al., 2021). It 
has been shown that OCS is directly emitted to the atmosphere from oceans (Von Hobe et al., 2001), wetlands 
(Watts, 2000), and anoxic soils (Devai & DeLaune, 1995), is formed chemically in the atmosphere through the 
oxidation of dimethyl sulfide (DMS; Barnes et al., 1994) and carbon disulfide (CS2; Chin & Davis, 1993), and is 
released through a wide variety of anthropogenic activities (Zumkehr et al., 2018).

Abstract  The oxidation of carbonyl sulfide (OCS) is the primary, continuous source of stratospheric 
sulfate aerosol particles, which can scatter shortwave radiation and catalyze heterogeneous reactions in the 
stratosphere. While it has been estimated that the oxidation of dimethyl sulfide (DMS), emitted from the surface 
ocean accounts for 8%–20% of the global OCS source, there is no existing DMS oxidation mechanism relevant 
to the marine atmosphere that is consistent with an OCS source of this magnitude. We describe new laboratory 
measurements and theoretical analyses of DMS oxidation that provide a mechanistic description for OCS 
production from hydroperoxymethyl thioformate, a ubiquitous, soluble DMS oxidation product. We incorporate 
this chemical mechanism into a global chemical transport model, showing that OCS production from DMS is a 
factor of 3 smaller than current estimates, displays a maximum in the tropics consistent with field observations 
and is sensitive to multiphase cloud chemistry.

Plain Language Summary  Accurate estimates of marine carbonyl sulfide (OCS) sources 
are critical for both modeling stratospheric aerosol concentrations, as OCS is an important precursor to 
stratospheric sulphate aerosol particles, and for estimating gross primary production, as OCS is readily 
consumed by the terrestrial biosphere. Despite the importance of OCS to both stratospheric aerosol chemistry 
and as an effective proxy for CO2 plant uptake, considerable uncertainty remains in the sources and sinks of 
OCS. A large source of this uncertainty arises in the marine sources, dominated by the oxidation of marine 
sulfur gases. Here, we examine the global production of OCS from the oxidation of a marine biologically 
produced molecule, dimethyl sulfide (DMS). We show that the multi-generational production of OCS proceeds 
through the oxidation of stable, water-soluble intermediates. Using a global chemical transport model, we find 
that OCS production is largest in the tropics, where cloud loss of hydroperoxymethyl thioformate, the primary 
precursor to OCS in the DMS oxidation mechanism, is at a minimum.
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Recent isotopic and inverse modeling studies indicate that the marine environment is the dominant source region 
for OCS and that there is either an over-estimation of the terrestrial OCS sink or an unaccounted-for OCS source 
that seems to be centered in the tropical oceans based on atmospheric inversion studies (Berry et al., 2013; David-
son et al., 2021; Ma et al., 2021). In response to recent suggestions that the production of OCS from the OH-ini-
tiated oxidation of DMS may be a significant source of uncertainty in the OCS budget (Davidson et al., 2021; Ma 
et al., 2021) and new discoveries of the chemical mechanism of DMS oxidation (Berndt et al., 2019; G. A. Novak 
et al., 2021; Veres et al., 2020; Wu et al., 2015), we revisit here the chemical mechanism for OCS production in 
the oxidation of DMS.

Most existing global OCS emission inventories use a uniform yield (0.7%) to calculate OCS production (POCS) 
from DMS ocean emissions (EDMS; i.e., for EDMS = 22 TgS yr−1, POCS = 0.155 TgS yr−1; e.g., Kettle et al., 2002). 
The OCS yield from the OH-initiated oxidation of DMS originates from the early laboratory studies of Barnes 
et al. (1994) where the production of OCS was attributed to the photo-oxidation of thioformaldehyde (H2CS), 
a product of peroxy radical (RO2∙) bimolecular chemistry (Figure 1). Due to limitations in the analytical tech-
niques available at the time, it was necessary to conduct these experiments at high precursor concentrations 
which are not representative of typical marine conditions. The experimental conditions resulted in large RO2∙ 
concentrations that over-emphasized bimolecular chemistry (RO2∙+RO2∙), thus shortening the lifetime of RO2∙ 
(τ(RO2∙)bimol < 5 s) at the expense of isomerization chemistry that is expected to dominate under pristine marine 
conditions. Recently, it has been shown that the methylthiomethyl peroxy radical radical (MTMP, CH3SCH2O2∙), 
the primary peroxy radical formed following H-abstraction of DMS, efficiently isomerizes to a stable interme-
diate, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCH = O) which has been observed to be ubiquitous 
in marine environments (Berndt et  al.,  2019; Veres et  al.,  2020; Vermeuel et  al.,  2020; Wu et  al.,  2015; Ye 
et al., 2021). Given the key role of unimolecular isomerization and secondary chemistry in the oxidation of DMS, 
that was suppressed in previous experiments, it is essential to revisit the formation of OCS under conditions 
(i.e., τ(RO2∙)bimol > 100 s) that accurately represent the marine environment.

Here, we present laboratory measurements of DMS oxidation conducted under dark, low RO2 and NOx-free con-
ditions to determine the oxidation mechanism and reaction intermediates in the chemical trajectory that connects 
DMS emissions with OCS formation. Our experiments, supported by new quantum chemical and theoretical ki-
netic calculations on the extended HPMTF chemistry, show that OCS is formed in high yield in the OH oxidation 
of HPMTF. These results underscore that modeling global OCS formation from DMS oxidation as a single fixed 
yield is inconsistent with the current understanding of DMS oxidation chemistry that proceeds through several 
stable, soluble intermediates and their specific chemistry including removal via multiphase processes (Hoffmann 
et al., 2016; G. A. Novak et al., 2021; Veres et al., 2020). We incorporate a simplified version of the chemical 
mechanism developed here into a global chemical transport model to quantify POCS and its response to HPMTF 
cloud chemistry that sequesters HPMTF and limits POCS in the cloudy marine boundary layer. We show that the 
multiphase and chemical mechanism-based approach results in a lower OCS global production rate with a spatial 
and temporal emission pattern different from the fixed-yield approach.

2.  Methods
Detection and quantification of trace gases was conducted using two Chemical Ionization Mass Spectrom-
eters (CIMS), an Aerodyne Compact Time of Flight CIMS (C-ToF) utilizing iodine ion chemistry (Bertram 
et al., 2011) and an Aerodyne/TOFWERK Vocus - Proton Transfer Reaction Time of Flight Mass Spectrom-
eter (Vocus; J. Krechmer et al., 2018). A custom-built laser-induced fluorescence (LIF) spectrometer (Rickly 
et al., 2021; Rollins et al., 2016) and a Los Gatos Research Enhanced Performance OCS analyzer (Berkelhammer 
et al., 2016) were used to detect sulfur dioxide (SO2) and OCS, respectively. DMS and methane thiol (MeSH), 
used for instrument calibrations and the environmental chamber experiments, were supplied from compressed 
gas cylinders (Praxair, DMS at 5.08 ppm in N2 and Airgas, MeSH at 6.11 ppm in N2) diluted to the target con-
centration. The sensitivity of the C-ToF toward HPMTF was determined to be 5 ncps pptv−1 using a flow reactor 
experiment previously described in Supporting Information S1 of Vermeuel et al. (2020) and was further verified 
by sulfur mass balance in the environmental chamber. For molecules identified in the Iodine CIMS mass spec-
trum, where commercially available standards were not available, absolute sensitivities were determined using 
the calculated binding enthalpy to iodine as described in Iyer et al. (2016). Species identified in the Vocus—PTR 
mass spectrum, where commercially available standards were not available, were assigned absolute sensitivities 
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by relating their literature proton affinity to those of species calibrated by liquid or cylinder methods (e.g., DMS, 
DMSO, acetone, and TME). Limits of detection (LOD) of HPMTF and OCS were determined to be 0.53 pptv 
and 2.21 pptv following the method of Bertram et al. (2011), at an integration time of 25 and 300 s, respectively. 
Chamber experiments were run in a 0.6 m3 5 mil (mil, 0.001 of an inch) PFA environmental chamber under am-
bient temperature (298 ± 1 K) and low relative humidity (<0.5% RH). The theoretical study is based on quantum 
chemical calculations at the CCSD(T)/aug-cc-pV(Q+d)Z//M06-2X-D3/aug-cc-pV(T+d)Z level of theory, com-
bined with transition state theory and RRKM-master equation calculations incorporating all conformers. Detailed 
discussion of the experimental and theoretical methods can be found in Supporting Information S1.

3.  Production of OCS in the Low-NOx Oxidation of DMS
To investigate the mechanism for OCS production from DMS under typical marine conditions, we conducted a 
series of dark, continuous flow environmental chamber experiments focused on the OH-initiated oxidation of 
DMS. Experiments were conducted at oxidant concentrations representative of the pristine marine environment 
([HOx] ≡ [HO2∙] + [∙OH] and [NOx] ≡ [NO] + [NO2] <10 pptv [RO2∙] < 150 ppt and τ(CH3SCH2O2∙)bimol > 
100 s; Creasey et al., 2003; Lee et al., 2009; Vaughan et al., 2012). Hydroxyl radicals (∙OH) were generated by the 
ozonolysis of tetramethyl ethylene (TME). Dry synthetic air conditions (<0.5% RH, 80% N2/20% O2) were used 
to facilitate higher yields of ∙OH from TME ozonolysis (YOH > 0.8) and to mitigate chamber wall losses (Alam 
et al., 2013; Donahue et al., 1998).

In our experiments, we observe consistent and reproducible (N = 7) production of OCS in the OH-oxidation of 
DMS under oxidative conditions representative of the pristine marine atmosphere (Figure 2a). As discussed be-
low, OCS production in our experiment cannot be attributed solely to the photo-oxidation of H2CS as previously 
suggested or experimental artifacts (Figure 1). We stress that the absolute fraction of OCS formed from DMS 
in this or any chamber study is specific to the experimental conditions of the environmental chamber (e.g., the 
fraction of second generation products that are oxidized) and not directly applicable to all atmospheric conditions 

Figure 1.  Chemical mechanism for the gas-phase OH-oxidation of dimethyl sulfide. Simplified chemical mechanism 
for the production of carbonyl sulfide (OCS) in the gas-phase OH-oxidation of dimethyl sulfide and methanethiol. The 
mechanism shown here combines the work of Barnes et al. (1994) and the hydroperoxymethyl thioformate (HPMTF)-derived 
OCS production pathway proposed here. The triplicate arrows pointing away from HPMTF denote multi-step mechanisms 
addressed in Supporting Information S1.
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as POCS from DMS oxidation is a function of: (a) the temperature-dependent 
fraction of DMS that is oxidized to MTMP, (b) the fraction of MTMP that 
forms HPMTF, a function of the temperature-dependent MTMP isomeriza-
tion rate (NO), (HO2∙), and (RO2∙) and (c) the fraction of HPMTF that is lost 
to chemical reaction with OH, which we suggest to be the dominant pathway 
for the gas-phase production of OCS from DMS. It has also been suggested 
that photolysis of the peroxide group in HPMTF could lead to OCS formation 
(Khan et al., 2021). To generalize the experiments described here, we use 
a chemical box model constrained by experimental observations and theo-
retical kinetic calculations to examine the chemical mechanism that leads 
to OCS formation in the OH-oxidation of DMS and develop a simplified 
mechanistic model for OCS production that can be incorporated into global 
chemical transport models to more accurately describe DMS-derived OCS 
production.

4.  Chemical Mechanism for OCS Production in the OH-
Oxidation of DMS
We examined three possible gas-phase pathways for OCS formation from 
DMS in our experiments: (a) OH-oxidation of H2CS, a product of MTMP 
bimolecular chemistry, (b) direct OCS formation from the OH-oxidation of 
HPMTF, a product of MTMP isomerization, and (c) OCS production from 
the oxidation of stable products of HPMTF OH-oxidation, such as thioformic 
anhydride (TFA) and thioperformic acid (TPA).

The production of OCS from the oxidation of H2CS was originally suggested 
by Barnes et al. (1994), where H2CS was proposed to be formed in the re-
action of the methylthiyl (CH3S∙) radical and O2, where CH3S∙ is a prompt 
product of the reaction of MTMP with HO2, RO2, or NO (Barnes et al., 1996; 
Mardyukov & Schreiner, 2018; Yin, Grosjean, Flagan, & Seinfeld, 1990). To 
evaluate the potential for the OH-oxidation of CH3S∙ to produce OCS, we ex-
amined the OH-oxidation of methane thiol (MeSH) as this reaction proceeds 
predominantly via H-abstraction leading to prompt and near unit yield of 
CH3S∙, providing a clean test for the production of OCS from MTMP bimo-
lecular chemistry. In the MeSH experiments, also conducted under low NOx 
and RO2∙ conditions, no OCS production was observed (Figure S6 in Sup-
porting Information S1) indicating that the OCS observed in the DMS exper-

iment is not formed through MTMP bimolecular chemistry. This is supported by the work of Chen et al. (2021), 
who also found that CH3S∙ oxidizes to SO2 in near unit yield and not H2CS, a potential precursor to OCS.

The first-generation production of OCS from the OH-oxidation of HPMTF has only been studied theoretically, 
where the thermal OCS yield was previously calculated to be insignificant (<0.01%; Wu et al., 2015). Here we 
revisit the production of OCS in the OH-oxidation of HPMTF using both experimental and theoretical tools. We 
first determine the rate constant for HPMTF + OH (kHPMTF + OH), a key fundamental step that connects DMS and 
OCS, using a 0-D box model that incorporates the Master Chemical Mechanism (MCM) v3.3.1 in the Framework 
for 0-D Atmospheric Modeling (F0AM; M. E. Jenkin et al., 1997; Saunders et al., 2003; Wolfe et al., 2016), con-
strained by chamber observations. In addition to the measurements of [HPMTF], we use measurements of dimethyl 
sulfoxide (DMSO) to constrain the fraction of DMS lost to the OH-addition channel (41%, consistent with known 
kinetics), methyl thioformate (MTF) to determine the RO2 concentration and MTMP bimolecular reaction rates 
(see in Supporting Information S1 for more information), and OCS and SO2 to constrain the terminal products of 
DMS oxidation within the model (Figures 2b and 2c). HPMTF production and loss rates were added to the exist-
ing MCM DMS oxidation mechanism and optimized to match observations, as discussed below. HPMTF produc-
tion from MTMP involves a two-step isomerization mechanism that is rate-limited by the first H-shift (kisom) that 
has been both calculated theoretically (kisom, Veres (293 K) = 0.041 s−1, kisom, Wu (293 K) = 2.1 s−1; Veres et al., 2020; 
Wu et al., 2015) and experimentally determined (kisom, Berndt (295 K) = 0.23 ± 0.12 s−1, kisom, Ye (293 K) = 0.09 

Figure 2.  Laboratory measurements of carbonyl sulfide (OCS) production 
from the OH-oxidation of dimethyl sulfide (DMS). Measurements (translucent 
thick lines) and first generational (FG, solid thin lines) and multi-generational 
(MG, dashed thin lines) model calculations of S-containing reaction 
products of the OH-oxidation of DMS. Measurements were conducted in 
an environmental chamber under low NOx oxidation conditions. Reaction 
products include: (OCS), hydroperoxymethyl thioformate, sulfur dioxide, 
thioperformic acid, methyl thioformate, and dimethyl sulfoxide.
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(0.03–0.3) s−1, kisom, this study (298 K) = 0.1 ± 0.05 s−1; Berndt et al., 2019; Ye et al., 2021). To determine kHPMTF + OH 
from the constrained box-model, we set kisom = 0.1 s−1. HPMTF loss is driven by: (a) gas-phase reaction with OH 
(kHPMTF + OH), (b) wall loss processes, and (c) chamber dilution intrinsic to a continuous flow regime. Using the 
box-model, constrained by the HPMTF growth curve and steady state concentration, and concentrations of other 
known sulfur species (DMS, DMSO, MTF, SO2), kHPMTF + OH was determined to be 1.4 (0.27–2.4) × 10−11 cm3 
molec−1 s−1, where the range in kHPMTF + OH is based on propagation of all sources of systematic uncertainty in 
the experiment (in Supporting Information S1). The experimentally determined rate (kHPMTF + OH) is an order of 
magnitude faster than the theoretical rate originally proposed by Wu et al. (2015), but within uncertainty of the 
experimentally-determined rate for the structurally similar molecule, methyl thioformate (kMTF + OH = 1.11 ± 0.2
2 × 10−11 cm3 molec−1s−1) and the theoretical rate determined in this study (kHPMTF + OH (298K) = 0.68 × 10−11 cm3 
molec−1 s−1). Additional chamber experiments performed to isolate the isomerization rate, HPMTF + OH loss 
rate, the sulfur product distribution, and model description are discussed in the SI.

In the OH-oxidation of HPMTF, we suggest that OCS can be formed as either a direct, first-generation product of 
HPMTF + OH, proceeding from the H-abstraction of the aldehydic hydrogen and the prompt decomposition of 
HOOCH2SC = O or as a multi-generational product following the OH-oxidation of the HPMTF reaction products 
thioformic anhydride (TFA, CHOSCHO) or thioperformic acid (TPA, HC(=S)OOH).

We first treat OCS formation empirically, using a simplified model where we determine the net OCS branching 
fraction from HPMTF+ OH (𝐴𝐴 𝐴𝐴OCS = 13% ) required to sustain the measured OCS (Figure 2a). Uncertainty in 
the determination of 𝐴𝐴 𝐴𝐴OCS 𝐴𝐴 (8.5% < 𝜙𝜙OCS < 49%) is dependent on the accuracy of the MTMP isomerization rate 
(kisom) used to determine kHPMTF + OH (see in Supporting Information S1). This analysis simplifies the chemical 
mechanism for inclusion in global models but does not permit correct accounting for multi-generational OCS 
production from TFA or TPA.

To further examine the multi-generational OH-oxidation of HPMTF, we also developed an extensive tempera-
ture dependent mechanistic framework for HPMTF oxidation to OCS based on theoretical kinetic calculations 
(SI 8, 9). Results from the multi-generational mechanistic model are also shown in Figure 2, where modeled 
steady-state (OCS) agrees to within a factor of two of the experimental measurement and a mechanistic pathway 
to describe the formation of TPA, observed in our study, is introduced. The pure theory-based multi-generation 
model does well to describe (OCS) and the existence of TPA, but additional chemistry or optimizations need 
to be introduced to fully capture the prompt formation of OCS and TPA, and the yield of SO2 (Figure 2b). Re-
maining differences between the model prediction and the experiment could be due to reactions of the highly 
soluble intermediates occurring on the Teflon chamber walls, although these are expected to be suppressed due 
to the low relative humidity (<0.5%) and the omission of gas-phase reactions of ozone with radical intermediates 
(e.g., HOOCH2S∙ + O3) in the theoretical mechanism. It is important to note here that the gas-phase production 
of OCS from DMS proceeds through three very soluble species (HPMTF, TFA and TPA), the condensed phase 
chemistry of which is currently unknown, and likely significantly modulates the production of OCS from DMS 
in regions with high aerosol surface area or cloud cover. A more detailed discussion of model-measurement un-
certainty, limitations in kHPMTF + OH and 𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 and the theoretical HPMTF mechanism can be found in Supporting 
Information S1.

5.  Global Estimates of OCS Production From DMS Oxidation
Global OCS production is modeled based on the simplified mechanism-based approach involving only 
first-generation HPMTF chemistry, that is, 𝐴𝐴 𝐴𝐴OCS = 𝜙𝜙OCS × 𝑘𝑘OH+HPMTF[HPMTF][OH] , where 𝐴𝐴 𝐴𝐴OH+HPMTF is 
1.4 × 10−11 cm3 molec−1 s−1 and 𝐴𝐴 𝐴𝐴OCS = 13% . This approach is compared with the existing, fixed-yield mod-
el where 𝐴𝐴 𝐴𝐴OCS = 𝑌𝑌OCS × 𝐿𝐿DMS , 𝐴𝐴 𝐴𝐴OCS  =  0.7% and 𝐴𝐴 𝐴𝐴DMS is the loss rate of DMS to reaction with OH or 

𝐴𝐴 𝐴𝐴DMS+OH[OH][DMS] . We used the GEOS-Chem global chemical transport model with an expanded DMS oxida-
tion mechanism and model updates to halogen chemistry and cloud processing (Holmes et al., 2019; G. A. Novak 
et al., 2021; Veres et al., 2020; Wang et al., 2019, 2021; version 12.9.2, www.geos-chem.org, see in Supporting 
Information S1 for more details). As shown in Figure 3a, the mechanism-based approach for calculating POCS 
(shown in red) results in a dramatic increase in the OCS source term from DMS oxidation (POCS = 680.1 GgS 
yr−1) compared with the traditional, fixed-yield approach (green line, POCS  =  106.1 GgS yr−1). In the fixed-
yield case POCS directly tracks DMS and OH concentrations, with enhancements in the Southern Ocean (Lana 

http://www.geos-chem.org/
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et al., 2011; Figures 4a and 4b). In contrast, results from the mechanism-based scenario indicate strong OCS 
production in the tropics that is associated with warmer temperatures that favor HPMTF formation and thus OCS 
production.

As noted above, it is well established that soluble molecules such as HPMTF are efficiently removed from the 
atmosphere via uptake to clouds and aerosol particles and through surface deposition. Vermeuel et al. (2020) and 
G. A. Novak et al. (2021), showed that cloud-loss can be a dominant sink for HPMTF in the marine boundary 
layer. In the context of the OCS budget, efficient cloud-loss of HPMTF likely terminates OCS production, setting 

Figure 3.  Modeled meridional and annual distribution of column carbonyl sulfide (OCS) production from the oxidation of di methyl sulfide (DMS). (a) Modeled 
meridional distribution of OCS production (POCS). The green trace depicts POCS calculated as a fixed yield (0.7%) of total DMS emission, the red and blue traces 
incorporate the HPMTF-based OCS production mechanism for an OCS branching fraction (�OCS = 13% ) in the HPMTF + OH reaction with (blue) and without (red) 
multiphase chemistry. (b) Modeled annual distribution of POCS for three marine regions for each of the three model representations of POCS shown in panel a. A map 
defining the three marine regions is shown in Supporting Information S1 (Figure S23 in Supporting Information S1).

Figure 4.  Global distribution of column carbonyl sulfide (OCS) production from the oxidation of DMS. Modeled global distribution of OCS production (POCS) 
calculated as a fixed yield (0.7%) of total DMS emission (a,b) and the HPMTF-based POCS mechanism at a 𝐴𝐴 𝐴𝐴OCS of 13% with multiphase chemistry (c,d) during the 
month of January (b–d) and July (a–c).
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up a competition between OH driven gas-phase chemistry that yields OCS and multiphase chemistry that likely 
suppresses OCS production from HPMTF. Here, we assume that the condensed phase chemistry of HPMTF, 
TFA, and TPA leads to sulfate (SO4

2−) formation, although the condensed-phase chemistry of these intermediates 
is currently unknown and could lead to aqueous OCS production. To assess the impact of multiphase chemistry 
on OCS production from HPMTF, we utilize the entrainment-limited cloud loss parameterization developed by 
Holmes et al. (2019). As discussed in G. A. Novak et al. (2021), we find that multiphase chemistry has an irre-
versible and significant impact on [HPMTF] suppressing OCS production. The addition of HPMTF multiphase 
chemistry reduces POCS from 680.1 to 52.9 Gg S yr−1 with the largest differences found in regions of high cloud 
cover at high latitudes (Eastman et al., 2011; King et al., 2013; Figure 3a). When compared to the fixed yield 
approach (Figures 4a and 4b), POCS derived from the HPMTF-based chemical mechanism (Figures 4c and 4d) 
is significantly lower in the Southern Ocean, where consistent cloud cover irreversibly sequesters HPMTF and 
limits OCS production. In all cases, the annual trend in POCS reflects seasonal differences in EDMS and [∙OH], 
where POCS peaks in January in the Southern Ocean, July in the North Atlantic, and nearly constant in the equato-
rial Pacific (Figure 3b). The meridional distribution of POCS, where POCS is largest in the tropics (Figure 3b, blue 
line), agrees qualitatively with the a posteriori marine OCS source found by Ma et al. (2021), which is markedly 
different than that derived from the fixed-yield approach (Figure 3b, green line).

Uncertainty in the marine OCS source has long hindered quantitative budget closure and obscured interpretation 
of historical trends in OCS (Campbell et al., 2017). Our study provides a critical constraint on the DMS-de-
rived source of OCS, which previously was believed to account for over half of the marine OCS flux with CS2 
oxidation and direct emissions accounting for the residual marine sources. While this new work places a more 
concentrated source in the tropical oceans - consistent with the location of the expected missing OCS source 
(Berry et al., 2013) - the study suggests a smaller overall OCS flux from the ocean which is inconsistent with 
recent suggestions that this source has generally been underestimated in global budgets (Launois et al., 2015; Ma 
et al., 2021). Consequently, the work raises important questions on whether the magnitude of the other marine 
sources such as CS2 and direct emissions (Lennartz et al., 2021) are underestimated as suggested by Launois 
et al. (2015), or whether the land sink is overestimated. While the global analysis presented here significantly 
advances the representation OCS production from DMS, further refinement of the marine OCS source term will 
require detailed laboratory studies of HPMTF oxidation in the gas and condensed phase and assessment of mul-
tiphase cloud chemistry in global models.
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